

Grid Modernization Initiative (GMI)

Integration of Renewable and Distributed Energy Resources (IRED) 2018

KEVIN LYNN

U.S. DEPARTMENT OF ENERGY

- Changing mix of types and characteristics of electric generation (in particular, distributed and clean energy)
- Growing demands for a more resilient and reliable grid (especially due to weather impacts, and cyber and physical attacks)
- Growing supply- and demand-side opportunities for customers to participate in electricity markets
- Emergence of interconnected electricity information and control systems
- Aging electricity infrastructure

Creating a 21st Century Grid

Responding to the drivers of change

Grid Modernization Initiative (GMI)

An aggressive and urgent five-year grid modernization strategy for the U.S. Department of Energy (DOE) that:

- Aligns existing base activities
 across DOE offices
- Defines a vision for the modern grid through an integrated Multi-Year Program Plan (MYPP)
- Establishes new activities to fill major gaps in the existing base
- Leverages strategic partnerships through a laboratory consortium with core scientific abilities and regional outreach

Create a Five Year Plan: Grid Modernization Multi-Year Program Plan (MYPP)

Integrate Technical Thrusts in the Grid Modernization MYPP

Design and Planning Tools	 Create grid planning tools that integrate transmission and distribution and system dynamics over a variety of time and spatial scales
System Operations, Power Flow, and Control	 Design and implement a new grid architecture that coordinates and controls millions of devices and integrates with energy management systems
Sensing and Measurements	 Incorporate information and communications technologies and advance low-cost sensors, analytics, and visualizations that enable 100% observability
Devices and Integrated Systems	 Develop new devices to increase grid services and utilization and validate high levels of distributed energy resources at multiple scales
Security and Resilience	 Develop resilient and advanced security (cyber and physical) solutions and real-time incident response capabilities for emerging technologies and systems
Institutional Support	 Provide tools and data that enable more informed decisions and reduce risks on key issues that influence the future of the electric grid/power sector
U.S. DEPARTMENT OF	
ENERGY	

Coordinate the National Laboratories: Grid Modernization Laboratory Consortium (GMLC)

Move from a collection of DOE and lab projects to a DOE-lab consortium model that integrates and coordinates laboratory expertise and facilities to best advance DOE grid modernization goals

Grid Modernization Lab Call 2016

Working across the country

- Up to \$220M
- 13 national laboratories
- 88 projects
- 150+ partners

Involve a Diverse Group of Stakeholders

U.S. DEPARTMENT OF

Design and Planning Tools

Objective: Drive development of next-generation tools that address evolving grid needs

Expected Outcomes

- A software framework to couple grid transmission, distribution, and communications models to understand cross-domain effects
- The incorporation of uncertainty and system dynamics into planning tools to accurately model renewables, extreme events, etc.
- Computational tools, methods, and libraries that enable a 1,000x improvement in performance

Simulating Interactions across Domains

Computational Speedup

System Operations, Power Flow, and Control

Objective: Develop advanced control technologies to enhance reliability and resilience, increase asset utilization, and enable greater flexibility of transmission and distribution systems

Expected Outcomes

- By 2020, deliver an architecture, framework, and algorithms for controlling a clean, resilient, and secure power grid
 - Leveraging advanced concepts, high performance computing, and more real-time data than existing control paradigms
 - Involving distributed energy resources as additional control elements
- Develop software platforms for decision support, predictive operations, and real-time adaptive control
- Deploy—through demonstration projects—new classes of power flow control device hardware and concepts
- Advance fundamental knowledge for new control paradigms (e.g., robustness uncompromised by uncertainty)

Conventional Controls

Distributed Controls

Sensing and Measurements

Objective: Develop low cost, advanced sensor and deployment strategies to provide complete grid system visibility for system resilience and predictive control

Expected Outcomes

- Advance and integrate novel, <u>low-cost</u> sensors to provide system visibility
- Develop next-generation, low-cost sensors that are accurate through disturbances to enable closed-loop controls and improved system resilience
- Develop real-time data management and data exchange frameworks that enable analytics to improve prediction and reduce uncertainty

Devices and Integrated Systems

Objective: Develop and update interconnection and interoperability methods, protocols, standards & test procedures

Focus Areas

- Work across DOE Program offices to develop technologies that provide a range of grid services
- Develop and update interconnection and interoperability methods, protocols, standards & test procedures
- Conduct technology and integrated system testing and validation

Expected Outcomes

- Develop new grid interfaces to **increase ability of new technology to provide grid services** for reliability, resilience and increase utilization of infrastructure
- Coordinate and support the development of interconnection and interoperability standards and test procedures for provision of grid services across all element of the grid
- Validate secure and reliability grid operation with **all forms of energy** at multiple scales (microgrids to transmission systems)

Develop Devices

Update Standards

Validate Devices and Systems

Institutional Support

Objective: Support and manage institutional change in a period of rapid (and potentially disruptive) technological innovation

Expected Outcomes

- Address high-priority grid modernization challenges and needs identified by electric power industry stakeholders, with particular emphasis on state policymakers and regional planning organizations
- Convene key grid stakeholders as an honestbroker for collaborative dialogues on grid modernization
- Create an overarching suite of grid-related "institutional" analysis, workshops, and dialogues to highlight challenges and explore options for transforming the grid, focusing on key policy questions related to new technologies, regulatory practices, and market designs

Security and Resilience

Objective: Provide a pathway to comprehensive multi-scale security and resilience for the nation's power grid

Expected Outcomes

- Holistic grid security and resilience—from devices, to microgrids, to systems
- Inherent security designed into components and systems, not security as an afterthought
- Security and resilience addressed throughout system lifecycle and covering the spectrum of legacy and emerging technologies

Resilient Distribution Systems

GRID MODERNIZATION INITIATIVE U.S. Department of Energy

- Seeks to develop innovative approaches to enhance the resilience of distribution systems, including microgrids, with high penetration of clean distributed energy resources (DERs).
- Focuses on field validations, including control/coordination strategies, realtime system monitoring, robust communications infrastructure, grid planning and analytical platforms, and integration of multiple DER technologies.
- Addresses cybersecurity needs in grid technologies from the earliest stages to survive a cyber incident.
- Builds upon previous GMLC work

- Period of Performance FY18/19/20
- Total Funding \$32M

Map of Research Locations for Selected Projects

Beyond the Levelized Cost of Energy (LCOE)

LCOE is not a bad metric...but an incomplete one

Thank You

Contact us at <u>gmi@hq.doe.gov</u> Visit us at <u>https://energy.gov/gmi</u>

